Some theoretical work on gamma-ray pulsar, double pulsars and BH binaries

易疏序

During 2016/10-2017/12 with K.S. Cheng @HKU

report on 2017/12 @ IHEP & PKU

Outline

- GeV flare of B1259-63/LS 2883
- GeV emission of HESS J0632+057
- Propeller effect of B1259-63
- Study pulsar wind in double neutron stars
- BH binary in AGN disk as GW source
- GW-Cherenkov radiation

Gamma-ray binaries

- Variable, timescale~stellar mass binary
- High Energy (0.1-100 GeV) even Very high energy (>100 GeV)

name	binary c	omponents	$P_{\rm orb} \ (d)$	HE	VHE	refs (\star)	notes
(high-mass) gamma	-ray binaries	1					
PSR B1259-63	pulsar	Be	1236.7	~	~	[12, 13]	$47.7 \mathrm{\ ms}$
${ m HESS}~{ m J0632}{+}057$?	Be	315		\checkmark	[14, 15]	
LS I $+61^{\circ}303$?	\mathbf{Be}	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?
1FGL J1018.6-5856	?	0	16.6	\checkmark	\checkmark	[18, 19]	
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]	
(low-mass) gamma-	ray binaries	(†)					
XSS J12270-4859	pulsar	red dwarf	0.29	\checkmark		[22, 23]	$1.7 \mathrm{\ ms}$
PSR J1023 + 0038	pulsar	red dwarf	0.20	\checkmark		[24]	$1.7 \mathrm{\ ms}$
2FGL J0523.3-2530	?	red dwarf	0.69	\checkmark		[25, 26]	
$\mathrm{PSR}~\mathrm{B1957}{+20}$	pulsar	brown dwarf	0.38	\checkmark		[27]	1.6 ms
PSR J0610-2100	pulsar	brown dwarf	0.29	\checkmark		[28]	3.8 ms
PSR J1311-3430	pulsar	brown dwarf	0.065	\checkmark		[29, 30]	$2.6 \mathrm{\ ms}$
microquasars (X-ra	y binaries)						
Cyg X-3	black hole ?	Wolf-Rayet	0.20	\checkmark		[31, 32]	
Cyg X-1	black hole	0	5.60	\checkmark	?	[33, 34]	
novae							
V407 Cyg	white dwarf	red giant	14000 ?	\checkmark		[35, 36]	N Cyg 2010
V1324 Sco	white dwarf	red dwarf	0.07?	\checkmark		[37]	N Sco 2012
V959 Mon	white dwarf	red dwarf	0.30	\checkmark		[37]	N Mon 201
V339 Del	white dwarf	red dwarf	0.13 ?	\checkmark		[37]	N Del 2013
V1369 Cen	white dwarf	red dwarf	?	\checkmark		[38]	N Cen 2013
colliding wind bina	ry						
Eta Car	LBV	O/WR ?	2014	\checkmark		[39, 40]	
* I only give one or	two recent i	references as e	entry poin	ts to t	the HE	/VHE lit	terature.
† not including ano	ther $> 50 Fe$	rmi-LAT puls	sars in bin	aries.			

Gamma-ray binary *pulsars*

- Variable, timescale~stellar mass binary
- High Energy (0.1-100 GeV) even Very high energy (>100 GeV)

name	binary co	omponents	$P_{\rm orb}~(d)$	HE	VHE	refs (\star)	notes		
(high-mass) gamma-ray binaries									
PSR B1259-63	pulsar	Be	1236.7	~	~	[12, 13]	$47.7~\mathrm{ms}$		
$\rm HESS~J0632{+}057$?	Be	315		\checkmark	[14, 15]			
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?		
1FGL J1018.6-5856	?	О	16.6	\checkmark	\checkmark	[18, 19]			
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]			
(low-mass) gamma-ray binaries (†)									
XSS J12270-4859	pulsar	red dwarf	0.29	\checkmark		[22, 23]	$1.7 \mathrm{ms}$		
${\rm PSR}~{\rm J1023}{+}0038$	pulsar	red dwarf	0.20	\checkmark		[24]	$1.7 \mathrm{\ ms}$		
2FGL J0523.3-2530	?	red dwarf	0.69	\checkmark		[25, 26]			
$\rm PSR~B1957{+}20$	pulsar	brown dwarf	0.38	\checkmark		[27]	1.6 ms		
PSR J0610-2100	pulsar	brown dwarf	0.29	\checkmark		[28]	3.8 ms		
PSR J1311-3430	pulsar	brown dwarf	0.065	\checkmark		[29, 30]	$2.6 \mathrm{\ ms}$		
microquasars (X-ray binaries)									
Cyg X-3	black hole ?	Wolf-Rayet	0.20	\checkmark		[31, 32]			
Cyg X-1	black hole	0	5.60	\checkmark	?	[33, 34]			
novae									
V407 Cyg	white dwarf	red giant	14000 ?	\checkmark		[35, 36]	N Cyg 2010		
V1324 Sco	white dwarf	red dwarf	0.07?	\checkmark		[37]	N Sco 2012		
V959 Mon	white dwarf	red dwarf	0.30	\checkmark		[37]	N Mon 2012		
V339 Del	white dwarf	red dwarf	0.13 ?	\checkmark		[37]	N Del 2013		
V1369 Cen	white dwarf	red dwarf	?	\checkmark		[38]	N Cen 2013		
colliding wind binary									
Eta Car	LBV	O/WR ?	2014	\checkmark		[39, 40]			
\star I only give one or two recent references as entry points to the HE/VHE litterature.									

† not including another > 50 Fermi-LAT pulsars in binaries.

Pulsar-Be star binary

- B1259-63/LS 2883
- Main sequence star: 31 M_solar
- Pulsar: spin: 47.76 ms
- Orbital period: 1237 days
- Semi major axis 7.2 AU
- Eccentricity 0.87

Modeling the GeV flare of B1259-63

- Matter from circumstellar disk captured by gravity of pulsar
- An accretion disk forms.
- Pulsar wind inverse-Compton scatter the soft photon from accretion disk

Modeling the GeV flare of B1259-63

2010 periastron

2014 periastron

ApJ 844, 144, 2017

Gamma-ray binary *pulsars*

- Variable, timescale~stellar mass binary
- High Energy (0.1-100 GeV) even Very high energy (>100 GeV)

name	binary co	omponents	$P_{\rm orb}~(d)$	HE	VHE	refs (\star)	notes		
(high-mass) gamma-ray binaries									
PSR B1259-63	pulsar	Be	1236.7	~	~	[12, 13]	$47.7 \mathrm{\ ms}$		
$\rm HESS~J0632{+}057$?	Be	315		\checkmark	[14, 15]			
LS I $+61^{\circ}303$?	Be	26.5	\checkmark	\checkmark	[16, 17]	magnetar ?		
1FGL J1018.6-5856	?	О	16.6	\checkmark	\checkmark	[18, 19]			
LS 5039	?	0	3.9	\checkmark	\checkmark	[20, 21]			
(low-mass) gamma-ray binaries (†)									
XSS J12270-4859	pulsar	red dwarf	0.29	\checkmark		[22, 23]	$1.7 \mathrm{ms}$		
${\rm PSR}~{\rm J1023}{+}0038$	pulsar	red dwarf	0.20	\checkmark		[24]	$1.7 \mathrm{\ ms}$		
2FGL J0523.3-2530	?	red dwarf	0.69	\checkmark		[25, 26]			
$\rm PSR~B1957{+}20$	pulsar	brown dwarf	0.38	\checkmark		[27]	1.6 ms		
PSR J0610-2100	pulsar	brown dwarf	0.29	\checkmark		[28]	3.8 ms		
PSR J1311-3430	pulsar	brown dwarf	0.065	\checkmark		[29, 30]	$2.6 \mathrm{\ ms}$		
microquasars (X-ray binaries)									
Cyg X-3	black hole ?	Wolf-Rayet	0.20	\checkmark		[31, 32]			
Cyg X-1	black hole	0	5.60	\checkmark	?	[33, 34]			
novae									
V407 Cyg	white dwarf	red giant	14000 ?	\checkmark		[35, 36]	N Cyg 2010		
V1324 Sco	white dwarf	red dwarf	0.07?	\checkmark		[37]	N Sco 2012		
V959 Mon	white dwarf	red dwarf	0.30	\checkmark		[37]	N Mon 2012		
V339 Del	white dwarf	red dwarf	0.13 ?	\checkmark		[37]	N Del 2013		
V1369 Cen	white dwarf	red dwarf	?	\checkmark		[38]	N Cen 2013		
colliding wind binary									
Eta Car	LBV	O/WR ?	2014	\checkmark		[39, 40]			
\star I only give one or two recent references as entry points to the HE/VHE litterature.									

† not including another > 50 Fermi-LAT pulsars in binaries.

Modeling the GeV flare of B1259-63

- Matter from circumstellar disk captured by gravity of pulsar
- An accretion disk forms.
- Pulsar wind inverse-Compton scatter the soft photon from accretion disk

The Propeller effect

The magnetic pressure stops the accretion flow at r_M

Co-rotating velocity > Kepler velocity @ r_M

Matter on the accretion disk is ejected

A spin down torque on the pulsar by the accretion disk

The spin down torque

A phenomenological description (Menou et al. 1999; degree of coupling between Liu et al. 2014): disk matter and field lines.

> $2\pi I \dot{\nu}_{\text{prop}} = 2r_{\text{M}}^{2} \dot{M}_{\text{acc}} \left(\sqrt{\frac{GM_{\star}}{r_{\text{M}}^{3}}} - 2\pi\nu \right) \chi,$ The angular momenta of Keplerian motion per unit mass per time The angular momenta of corotation per unit mass per time

The factor 2 in the right hand side of the above equation comes because there are two nearly equal contributions of the torque: the angular momenta transferred at the inner edge of the disc and the angular momenta transferred from the accretion flow to the magnetic eld beyond the inner edge (Menou et al. 1999).

The spin down torque

Figure 2. $\dot{\nu}_{\rm prop}$ due to the propeller torque, when $\dot{M}_{\rm eva} = 10^{13}, 5 \times 10^{12}$ and 3×10^{12} g/s (black-solid, blue-dash-dotted and red-dashed respectively), with the assumption that $\chi = 0.001$.

Repetitive with the orbital period

the spin derivative

Figure 3. additional timing residuals due to the propeller barking when $\dot{M}_{eva} = 10^{13}, 5 \times 10^{12}$ and 3×10^{12} g/s (black-solid, bluedash-dotted and red-dashed respectively) and $\chi = 0.001$

Timing residuals

Large timing residuals of parabolic structure will be removed, when fitting a constant nudot

More timing residuals will be absorbed by fitting other binary parameters.

The red curve is the observed timing level residuals.

The timing residuals

Figure 5. The timing residuals after all parameters refitted when $\dot{M}_{\rm eva} = 10^{13}$ g/s and $\chi = 0.001$. The dashed-red curves represent the upper and lower limit set by the TOA uncertainty and observed residuals.

Figure 6. The same figure as in figure 5, but for $\chi = 10^{-4}$

If χ =1e-3, the predicted timing residuals is larger than the observation.

 χ needs to be smaller than 1e-4, in order to fit with observation.

The propeller torque by Romanova (2003)

where \mu is the magnetic dipole of the neutron star and f is a factor which the authors took f = 0.3.

χ=1e-4 doesn't violent with(8) and (9)

Figure 7. The absolute value of $\dot{\nu}_{\rm prop}$ when $\chi = 10^{-4}$ (black dotted), the lower limit of $|\dot{\nu}_{\rm prop}|$ set by inequality (8) (red solid) and $|\dot{\nu}_{\rm prop}|$ set by equation (9) (blue dash-dotted).

Modeling the GeV flare of B1259-63

- Matter from circumstellar disk captured by gravity of pulsar
- An accretion disk forms.
- Pulsar wind inverse-Compton scatter the soft photon from accretion disk

How pulsar wind accelerates?

• The energy of Pulsar wind =EMW+e^{+/-}

 $\sigma = W_{\rm EM}/W_{\rm part}.$

 $\sigma = \sigma_{\rm L} \left(\frac{r}{r_{\rm L}}\right)^{-\alpha_{\sigma}}$

Model dependent

The velocity and density distribution of e^{+/-} in pulsar wind in double neutron stars

$$\begin{split} \delta \mathrm{DM} &= \int_{0}^{\infty} \frac{1}{\sqrt{1 - r_{\mathrm{s}}/r}} \frac{n_{\mathrm{e}}'}{(1 - \beta \cos \theta)} dl. \\ \text{Velocity distribution} \\ \text{Function of system geometry} \\ \text{And orbital phase} \\ n_{\mathrm{e}}(r) &= \frac{L_{\mathrm{sd}}}{4\pi\beta c^{3}r^{2}m_{\mathrm{e}}(1 + \sigma)\gamma}, \end{split}$$

Orbital phase-modulated Dispersion measure

J0737-3039A/B

Figure 4. Time delay due to the additional DM in PSR J0737-3039A/B in the observing frequency of 300 MHz, compared with Shapiro delay (dash-dotted curve). The black, red and blue line colors correspond to $\sigma_L = 1 \times 10^3$, 1×10^4 and 1×10^5 respectively; The solid, dashed and dotted line styles correspond to $\alpha_{\sigma} = 0$, 1 and 2 respectively. For all curves, $\gamma_{\infty} = 10^3$ is adopted.

J1915+1606

Figure 6. Time delay due to the additional DM in PSR J1915+1606 in the observing frequency of 300 MHz, compared with Shapiro delay (dash-dotted curve). The black, red and blue line colors correspond to $\sigma_L = 1 \times 10^3$, 1×10^4 and 1×10^5 respectively; The solid, dashed and dotted line styles correspond to $\alpha_{\sigma} = 0$, 1 and 2 respectively. For all curves, $\gamma_{\infty} = 10^3$ is adopted.

MNRAS 472, 400 (2017)

Feasibility of archival, current and further observation

- PSR J0737-3039A/B: L_{sp}=10³⁰erg/s
- Best timing observation: 18µs with 30-s integration @ GBT, 820 MHz.
- Predicted time delay~10 μs at 300 MHz.
- Need at least 4 times longer integration time of GBT
- Or use larger telescope like FAST

- PSR J1915+1606
- If $L_{sp} > 10^{33}$ erg/s, predicted time delay can be up to $10^{20} \mu s$ in 300 MHz.
- Best timing observation ~5 μs with 5-mininute integration @ Arecibo.
- May ready to be seen in archival data of Arecibo!
- Or set upper limit of L_sp

BH binary in AGN disk as GW source

Belczynski et al. 2016

Alternative channel to M>20M_solar?

Tang et al. 2017

BH binary accreting in AGN disk

Yi, Taam and Cheng, in prep.

EM counterpart of GW

- Associated with AGN
- EM counterpart in ~keV

$$L_{\rm EM} = 1.26 \times 10^{38} \times \frac{4\pi\eta}{\Delta\Omega} \frac{M}{M_{\odot}} \,\mathrm{ergs/s}$$

For $M = 50 \,M_{\odot}, \ \eta = 100$ and $\Delta\Omega = 1, \ L_{\rm EM} = 8 \times 10^{42} \,\mathrm{ergs/s}.$

- $L_{AGN,X} < L_{EM}$ $\alpha_{ox} = -0.384 \log(L_x/L_o),$ $\alpha_{ox} = 1.34$ (Grupe et al. 2010), we find that $L_o < 2.5 \times 10^{46} \, \mathrm{ergs/s}.$
- X-ray weak AGN, or low state AGN (η_{SMBH} <0.1 for M=1e8 M_o)

Yi, Taam and Cheng, in prep.

GW-Cherenkov radiation

- Sound wave: cone-shock
- EM wave: Cherenkov radiation
- GW wave: GW-Cherenkov radiation...

$$\frac{c^2}{c_{\rm g}^2} = 1 + \frac{4\pi G\rho}{3\omega_{\rm g}^2}, (\omega_{\rm g} \gg \sqrt{\frac{4\pi G\rho}{3}}). \qquad \rho = 10^{12} M_{\odot}/{\rm Mpc}^3 \qquad \qquad \tau \equiv E/E \\ > 10^{106} \left(\frac{{\rm eV}}{E}\right) {\rm s}.$$

E<10¹⁴ eV due to photon-photon scattering with CMB and Extragalactic background light

Nonzero but neglectable

arXiv:1706.08722

Modern Physics Letters A, Volume 32, Issue 9, id. 1750059 (2017)

Outline

- GeV flare of B1259-63/LS 2883
- GeV emission of HESS J0632+057
- Propeller effect of B1259-63
- Study pulsar wind in double neutron stars
- BH binary in AGN disk as GW source
- GW-Cherenkov radiation

